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Abstract- Photovoltaic power forecasting plays an important role 
in the power system planning and contributes to the development 
of renewable energy. This paper proposed a two-stage forecasting 
method based on Extreme Learning Machine (ELM) and 
Improved Pointwise Mutual Information (IPMI), which is 
responsible for short-term forecasting of the small-scale PV 
station. The method like a hybrid method requires past measured 
Numerical Weather Prediction (NWP) data and time series of PV 
power output as input of the system. During the first stage, PMI 
algorithm is applied to solve the coupling problem and to 
determine the weather features that contribute to the PV power 
output. Locally weighted regression (LOESS) smoothing is used 
as a nonparametric technique to fit a smooth curve to calculate 
regression error. Then, historical data will be classified into 
several groups by affinity propagation (AP) clustering method, 
combing with principal component analysis (PCA). For the 
second stage, training models and prediction models based on 
ELM network will be set up for each group obtained by AP 
clustering respectively. Numerical results for a small-scale PV 
plant in Beijing present improvements in forecasting accuracy 
and computation efficiency when compared to other forecasting 
methods. 

Index Terms—Photovoltaic forecasting, extreme learning 
machine (ELM), improved pointwise mutual information (IPMI), 
PCA-AP clustering. 

I.  INTRODUCTION 
In recent years, solar photovoltaic power is developing 

rapidly as a clean, sustainable, and environment-friendly 
energy source. The average annual growth rate of global 
photovoltaic power generation capacity in 2005-2018 is higher 
than 30%. Under optimal conditions, the world’s solar 
generation plant capacity could reach up to 1,270.5 GW by the 
end of 2022 [1]. It’s undoubted that solar is the fastest 
growing power generation source. However, due to the 
volatility and randomness of photovoltaic power, increasing 
photovoltaic power generation has a negative impact on the 
power grid when it is connected to the grid [2]. Accurate and 
reliable PV power forecasting is one of the key technologies to 
solve above issues, especially for short-term prediction. At 

present, it has become an indispensable part of PV power 
generation grid-connected management, conventional power 
plant scheduling and energy market decision-making [3].  

Various approaches for solar power forecasting are 
reported in the literature. There are three main methods: 
physical method, statistical method and machine learning 
method, and hybrid method [4]. In many literature, NWP data 
is essential to predict PV power output. From the perspective 
of physical power generation of photovoltaic panels, solar 
irradiance is the main factor determining photovoltaic power, 
but there are many other factors such as temperature, wind 
speed, cloud, geographic coordinates, etc., and the factors are 
coupled with each other. Therefore, the specific factors 
affecting the PV power should be considered to improve the 
prediction accuracy. 

Statistical and machine learning method as data-driven 
technology are promising ones [5-6]. It consists of differential 
autoregressive moving average model (ARIMA), artificial 
neural network, Markov chain, time series, support vector 
machine, wavelet analysis algorithm, and random forest 
algorithm. ELM has been successfully used to predict the 
output power of photovoltaic power plants [7,8]. Hybrid 
models are the combination of two or more forecasting 
techniques to improve the accuracy of the forecast. Many 
studies have showed that integrated forecast methods 
outperform individual forecast [8-10]. It is founded that ANN 
is combined with wavelet to develop a new forecasting 
method [11]. Other authors like [12-14] used other soft 
computing techniques like GA, fuzzy logic, Quantum based 
GA, etc. to develop hybrid models. However, most of them 
compromise the computation efficiency to set up sophisticated 
network models as to improve the forecasting accuracy, which 
may degrade the performance of power system in real-time 
operation. 

This paper proposes a two-stage forecasting method that 
combines ELM and IPMI. During the first stage, IPMI 
algorithm is applied to extract weather features that contribute 
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to the PV power output. LOESS smoothing is used to calculate 
regression error. Then, historical data will be classified into 
several groups by AP clustering method. Besides, PCA 
introduces a low latitude feature to represent high latitude to 
reduce the complexity of clustering and training. For the 
second stage, training models based on ELM network will be 
set up for each group obtained by AP clustering respectively. 
According to the distances between forecast sample and 
clustering center, each day-based forecast sample will be 
automatically updated to a specific group. The NWP data and 
PV power output time series are used as two-stage ELM 
(TSELM) model input to forecast the PV power. To our best 
of knowledge, seldom work applies entropy concept into 
weather factor selection and combined IPMI with ELM for PV 
power forecasting, which definitely improve the efficiency of 
factor selecting and enhance the forecasting accuracy. 
Moreover, several sets of Benchmark datasets are synthesized 
to verify the validity of the IPMI method. A comprehensive 
comparative study is tested on real-world datasets of a Beijing 
PV power plant to confirm the effectiveness of the proposed 
method. 

The paper is organized as follows. Methodology is 
introduced in Section II; Section � presents the training and 
validation results; and finally, Section IV concludes the paper. 

II.  METHODOLOGY 
A. IMPI Algorithm 

In 1948, Shannon firstly proposed the theory of 
information entropy, which applied the concept of entropy in 
thermodynamics to probability statistics and solved the 
problem of quantitative measurement of information [15]. 
Information entropy can be described as: 

              
=1

( ) log
n

i i
i

H X p p= −�             (1) 

where H (X)  is the information entropy of X , pi  is the 
probability distributions, n is the number of datasets. The part 
related to the two variables are defined as Mutual Information 
(MI). Information entropy of mutual information (MI) is 

( , )( , ) ( , ) log
( ) ( )
p x yI X Y p x y dxdy

p x p y
= ��         (2) 

2

1ˆ( ) exp( )
2( 2 )

i

d

x x
f x

hn hπ
− −

=
�

             (3) 

where p(x), p(y) are the marginal probability density 
function (PDF) of X and Y, h is the kernel function parameter, 
� is the variance of x. 

For multi-input systems, the coupling relationship between 
the input would confuse the MI value between input and 
output. Therefore, the Partial Mutual Information (PMI) is 
used as the basis for selecting input variables. To improve the 
accuracy of the variance selection, LOESS as nonparametric 
learning algorithm is proposed to calculate the regression 
result as the following: 

min ���� � � �i(yi-�
Txi)

2
i          (4) 

my(x)=�Tx+R          (5) 

where, �i  is weight; �  is regression matrix; my(x)  is the 
regression value; R is the error which is trivial and can be 
ignored. 

Detailed procedure of IPMI: Let the input variable set be 
C, the output variable be Y, the optimal input variable set be S, 
and Xs  be the candidate variable corresponding to the 
maximum PMI value. 

Step 1: Initialize S, as an empty set. 

Step 2: When X ��. 

Step 3: Calculate u = Y-my(S). 

Step 4: For each input variable, calculate I(Xj,u). Find the 
Xj�corresponding to the maximum I as Xs. 

Step 5: Calculate the AIC value. If the AIC value 
decreases, move Xs  into S and return to step 2; otherwise, 
terminate the screening. 

2 2

1

1log( ) 2*
n

i
i

AIC n u p
n =

= +�       (6) 

Step 6: Return the optimal input variable set S. 

where n is the number of samples; p is the number of 
selected variables; u� is the regression residual of Y calculated 
from the selected variables. When the AIC reaches the 
minimum value, the optimal independent variable set is 
extracted. 

Benchmark 

This paper synthesizes six sets of Benchmark datasets to 
verify the validity of the PMI method. Although the datasets 
are synthetic, they represent a series of different degrees of 
nonlinear or continuous time series, shown as Table �. 

TABLE I. BENCHMARK DATA-GENERATION MODELS 

Linear auto-regressive time-series 

AR4
1 40.6 0.4 ε− −= − +t t t tx x x  

AR9
1 4 90.3 0.6 0.5 ε− − −= − − +t t t t tx x x x  

Non-linear threshold auto-regressive time-series 

TAR1     3 3

   3  

0.9 0.1 if  0
  

0.4 0.1 otherwise
ε

ε
− −

−

− + ≤�
= � +�

t t t
t

t t

x x
x

x
 

TAR2    6 10  6

   10  

0.5 0.5 0.1 if  0
  

0.8 0.1 otherwise
ε

ε
− − −

−

− + + ≤�
= � +�

t t t t
t

t t

x x x
x

x
 

Non-linear input-output functions 

Firedman 2
1 2 3 4 55(2sin( )) 4( - 0.5) 2 )π ε= + + + +y x x x x x  

Mexican 
Hat 

2 2
1 2

2 2
1 2

sin( )
ε

+
= +

+

x x
y

x x
 

 

where, x~N(0,1) is the input variable; �~N(0,1) is the noise 
signal. For the first 4 sets of data sets, output variables are xt, 
and 15 input variables are xt-i(i=1,2,�	15). For the Friedman 
dataset, the output variable is y, and the input variable is 
x1,x2,x3,x4,x5 and 10 white noise sets; For the Mexican Hat 
dataset, the output variable is y, and the input variable is x1,x2 
and 13 white noise sets. The sample sizes of the six 
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Benchmark data sets are prescribed as 50, 100, and 500; then 
using IPMI, 30 simulations are performed in each case. 

TABLE II. BENCHMARK VERIFICATION RESULTS 

 Accuracy rate/% 

Sample size N=50 N=100 N=500
AR4 50 83.3 90
AR9 43.3 63.3 83.3

TAR1 20 33.3 56.7
TAR2 36.7 70 76.7

Friedman 26.7 33.3 36.7
Mexican 66.7 86.7 86.7

 

It can be seen from Table II that for linear autoregressive 
models and nonlinear autoregressive models, as the number of 
samples increases, the accuracy rate of IPMI screening 
increases. The candidate variables of the Friedman and 
Mexican datasets are not related to each other. The screening 
accuracy rate is basically not affected by the sample. The 
results shown in the experiment demonstrated that this method 
can be applied into the selection of weather features. 

B. PCA-AP classification 
PCA is the most common dimensionality reduction 

algorithm. When projecting all the data onto the low-
dimensional plane, the goal is to minimize the projected mean 
squared error. The input of the prediction model is generally 
the weather feature matrix. The data sample is described for 
one day, the totally three-dimension matrix can reduce a two-
dimension matrix by PCA. Then, the AP clustering algorithm 
is used to classify the weather factor data in days, adopting 
Euclidean distance as a measure of similarity. With the 
advantage of AP clustering, there is no need to set the number 
of classes in advance. A desirable classification result can be 
obtained after iterations. 

For each data point in the sample set, a matrix S(i,j) is used 
to present the similarity between the data points. It shows the 
ability of data point xj becoming the clustering center of data 
point xi. The larger the S(i,j) value, the closer distance between 
the two points. S(i,j) is calculated as: 

2
( , ) i jS i j x x= − −               (7) 

Attraction information, r(i,k) , represents the degree to 
which data point xk fits the cluster center of the data point xi; 
membership information, a(i,k) , describes the possibility of  
data point xi selecting data point xk as its cluster center. The 
equation of r(i,k) is shown in formula (8), and the equation of 
a(i,k) is shown in formula (9) 

'
( , ) ( , ) max{ ( , ') ( , ')}

k k
r i k S i k a i k s i k

≠
← − +       (8) 

 
' { , }

( , ) min{0, ( , ) max{0, ( ', )}}
i i k

a i k r k k r i k
∉

← + �       (9) 

The iterative process computes automatically and 
terminates until it reaches the maximum iteration times, or the 
iterative process converges. 

C. ELM network 
Huang G-B et al. proposed a single-hidden layer feed 

forward neural networks called ELM [7,16], with structure 

shown in Figure 1. It’s able to produce good generalization 
performance and learn thousands of times faster than networks 
trained using backpropagation. This paper applies ELM to 
approximate the dynamic nonlinearity of photovoltaic power 
generation.  

 
Figure 1. The structure of ELM network 

For N data samples (xi,ti) , where xi=[xi1,xi2,�,xin]T 
 Rn 
and ti=[ti1,ti2,�,tim]T 
 Rm  are the input and ideal outout, 
respectively. The activation function g(x)  with L hidden 
neurons are mathematically modeled as follows: 

1
( b ), 1,2, ,

L

i j j i j
j

g i N
=

= ⋅ + = …�o � w x        (10) 

where wj=[wj1,wj2,�,wjn]T  is the weight vector describing 
the connection between the jth hidden node and the input 
nodes; �j 
 Rm is the weight vector describing the connection 
between the jth hidden node and the output nodes. Using g(x) 
to approximate those N samples with zero error, the 
mathematical formula among �j, wj, and bj satisfies: 

1 1 1

( b ) 0
N L N

j j i j i i i
i j i

g
= = =

⋅ + − = − =� � �� w x t o t     (11) 

Equation (11) can be rewritten simply as formula (12): 

=H� T           (12) 

where the hidden layer output matrix H is defined as: 

1 1 1 1

1 1

( b ) ( b )

( b ) ( b )

L L

N L N L N L

g g

g g
∗

⋅ + ⋅ +� �
	 
= 	 

	 
⋅ + ⋅ +� �

�
� � �

�

w x w x
H

w x w x
   (13) 

At the beginning, the input weights wj  and biases bj  are 
randomly assigned, then we compute the output weight vector 
� as formula (14) to fulfill the ELM training. 

−=� H T          (14) 

where H- stands for the Moore-Penrose inverse of matrix 
H [16]. 

D. TSELM method 
The schematic diagram of the proposed TSELM model is 

shown in Figure 2. In this proposed forecasting technology, 
both historical data and weather report information are used in 
the forecasting process. In the first stage, PV power time 
series and NWP data as inputs are sent to the IPMI block, 
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extracting main weather features. For simplicity and 
computation improvement, 3-D arrays are flattened into 2-D 
plane to obtain dimensionality reduction by PCA. Then 
through AP clustering, former 2-D vectors are analyzed and 
classified into several groups in the units of one day, which 
means that each arbitrary day can find the attaching group 
with the similar forecasting model. In addition, the results will 
be checked whether it is related to some specific relationship 

(e.g. season or weather type). For the second stage, forecast 
sample is sent to the model selection block. The model type is 
updated by calculating the distance between each group center, 
where the shortest one will be regarded as the training model. 
Based on former clustering results, historical data remarked by 
the model type and forecast sample data are sent to the ELM 
to forecast the day ahead PV power output. 

 
Figure 2. Detailed procedures for the TSELM framework 

III.  TRAINING AND VALIDATION OF RESULTS 
The NWPs are received from the meteorological services 

of local weather station, including the daily solar irradiance, 
the lowest air temperature, the highest air temperature, the 
daily relative humidity, the daily wind speed, the wind 
direction, the cloud amounts, the air pressure, and so on. In 
this paper, the NWPs data is detected from a small-scale PV 
station in Beijing. The data samples are historical data from 
2016/10/21 to 2017/10/22.  

A. Data processing 

To eliminate the influence of different variable values 
and dimensional differences on analysis and modeling, the 
sampled data is normalized as shown in equation (19): 

min
norm

max min

-
-

z zz
z z

=                       (15) 

where, znorm is the normalized value; z is the original data; zmax 
is the maximum of data; zmin is the minimum of data. 

B. Evaluation metrics 
In order to assess the performance of the proposed 

approach, three evaluation metrics, MAPE, MAE and RMSE 
are computed. The smaller the error measures, the better the 
performance of the predictor. 

1

1MAPE
N

i i

i i

t T
N T=

−= �         (16) 

1

1MAE
N

i i
i

t T
N =

= −�         (17) 

( )2

1

1RMSE
N

i i
i

t T
N =

= −�        (18) 

where N is the number of samples, Ti is the actual value, ti 
is the predictive value. 

C. Feature selection and clustering result 
Irradiance and temperature, which track the solar state, 

exhibit significant daily periodic and seasonal variations. Here, 
a demonstration photovoltaic power station in Beijing is 
selected as the research object. PV power generation 
distribution in a whole year is shown in Figure 3. 

 
Figure 3. Solar power output curve in three-dimension 
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From Figure 3, we can see the correlation among different 
days, and the curve can be utilized for one-day PV power 
forecasting. Then, IPMI is used to select main weather 
features. The inputs contain 6 variables: solar irradiance, 
ambient temperature, relative humidity, wind speed, wind 
direction and precipitation. Probability distribution and 
selection of IPMI variables are shown in Figure 4 and Figure 5, 
respectively. It can be concluded that 4 variables, solar 
irradiance, ambient temperature, relative humidity and wind 
speed, are the dominant factors affecting photovoltaic power 
generation, which are selected as input variables for the next 
model clustering. 

 
Figure 4. Probability distribution of weather feature 

 
Figure 5. IPMI feature selection output 

The result of AP clustering by days is shown in Figure 6. 
The data available for totally 357 days can be divided into 4 
categories, 84 days in group 1, 74 days in group 2, 114 days in 
group 3, and 85 days in group 4. We can see that the data in 
each group is not continuous and the two adjacent days may 
not be in the same group. Then, the prediction model is 
established for each group, and the historical NWP data is 
used to perform parameter optimization and determination 
offline for the next forecasting.  

 
Figure 6. Classification result of AP algorithm 

D. Forecasting result 
In this part, case study was designed to forecast the power 

output of PV plant for three successive days from 2017/10/23 
to 2017/10/25. The hidden nodes of TSELM layer is 
optimized to be 200. Besides, we compared the result of the 
proposed TSELM method with that of SVM method and BP 
neural network to verify the effectiveness of TSELM. 
According to the time of sunrise and sunset, we selected the 
data from 7:45am to 4:45pm. The forecasting result is shown 
in Figure 7. Table III lists the MAPE, RMSE, MAE and 
training time values of the three compared models, in 72 
hours. 

 
Figure 7. PV power forecast result in 72 hour-ahead 

TABLE III. COMPARATIVE ANALYSIS OF TSELM WITH BP AND SVM 

 MAPE, % MAE RMSE Training time 

TSELM 3.467 0.380 0.0467 00:00:23 

BP 4.247 0.253 0.0708 00:03:26 

SVM 5.016 0.385 0.0812 00:01:48 

From Figure 7 and Table III, it can be observed that the 
proposed TSELM method outperforms with least MAPE, 
RMSE and training time among these three. With the 
advantages of selecting the main weather features and 
classification for different models, the proposed method shows 
an increase in forecasting performance and improves the 
training efficiency by using ELM. The training time in this 
case is 23 seconds, which is greatly reduced for network 
building and training, making it a promising option to be used 
for real-world applications in smart grids. Therefore, it can be 
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concluded that the proposed TSELM is suitable for short-term 
PV power forecasting of the small-scale PV power plants.  

IV.  CONCLUSION 
A novel two-stage PV power solar forecasting method 

based on ELM and IPMI is proposed in this paper. Firstly, 
four weather features are extracted by using IPMI. The time 
series of PV output and NWP in the experiment period are 
classified into four groups in days by PCA-AP clustering 
algorithm. Then, the time series of PV output and NWP data 
for each group are used as the input of ELM network to train 
the different models. Case study forecasted the power output 
of PV plant for 3-day ahead from 2017/10/23 to 2017/10/25. 
Numerical results show that the proposed method has better 
performance with less error in terms of better prediction 
accuracy and faster computation efficiency. Due to the highly 
variable capability, this method could become a part of real-
time operation in power system related to numerous issues e.g. 
energy management, power dispatch, system control and 
energy market decision-making.  
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