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Abstract—The value iteration mechanism is introduced to de-
sign the constrained optimal tracking controller for continuous-
time nonlinear system in this paper. Unlike most studies were
developed by policy iteration, the proposed VI algorithm is
designed to be started with arbitrary semi-definite positive
function, and thus no restriction is in the initial condition. The
iterative property of the proposed algorithm is discussed and
the optimality of the iterated results are obtained. To verify the
effectiveness, a nonlinear case is simulated.

Index Terms—Constrained control, adaptive dynamic pro-
gramming, value iteration

I. INTRODUCTION

In the last decades, a framework called ADP (adaptive

dynamic programming) has became an effective way to design

nonlinear optimal controller [1] and attracted lots of attentions

in recent years [2]–[7]. Generally, policy iteration (PI) and

value iteration (VI) were two typical iterative mechanisms in

the framework [1]. PI methods suffered from the admissibility

of the initial control and attempted to solve the value function

according to the admissible control [8]. In contrast, VI meth-

ods can seek the optimal solution without the above restriction.

For the nonlinear optimal tracking controller design, most

works [2]–[7] were developed by PI. Generally, the optimal

tracking controller was designed by combining the feedback

part and the steady-state part [2], where the steady-state

part was derived by system dynamics and desired trajectory

dynamics and the feedback part was obtained by introducing

a PI-based method. In [4], the authors introduced discount

factor to define the performance function and attempted to

design the controller as a whole. In [5], the authors developed a

data-based method according to the performance function with

discount factor. However, since most works were developed

by PI, the initial restriction was generally inevitable. Some

researchers attempted to overcome the initial restriction and

designed the tuning law by adding a Lyapunov function candi-

date term [6], [7], but the concrete way to select the Lyapunov

function candidate was not proposed, causing difficulty in

implementation of the methods. In [9], an algorithm was

proposed to derive the optimal tracking controller by using

VI, but the control constraints were not considered.

To overcome the control constraints, [8] defined a non-

quadratic performance function for constrained systems and

proved the iterative convergence for PI. In [10], an algorithm

was developed to learn constrained controller with experience

replay technique by introducing integral reinforcement learn-

ing. [11], [12] studied the off-policy methods for constrained

optimal controller design. In [3], the authors proposed the fea-

sibility of PI-based methods while designing the constrained

optimal tracking controller. However, the initial condition was

restricted to requiring an admissible control policy.

In this paper, the value iteration mechanism is used to design

the nonlinear constrained optimal tracking controller. First,

we augmented the original system dynamics, and introduce

discount factor to define a nonquadratic value function. Then,

the algorithm is proposed and the initial condition is given by

an assumption, which overcomes the initial restriction in PI.

The iterative property is analysed and the iterative property

and the optimality of the algorithm are discussed. Finally, a

nonlinear case is presented to show the feasibility.

II. PROBLEM STATEMENT

Consider the continuous-time nonlinear system as

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x ∈ R
n represents system state vector, u ∈ R

m rep-

resents the control input vector. f(x(t)) ∈ R
n and g(x(t)) ∈

R
n×m represent the drift dynamics and the input dynamics

of the system, respectively. The control u is assumed to be

constrained as below

|ui| ≤ ū, (2)

where ū > 0 represents the bound value and i = 1, 2, . . . ,m.
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l(t) represents the desired trajectory and is assumed to

satisfy

l̇(t) = s(l(t)), s(0) = 0. (3)

The controller is aimed at tracking the trajectory of l(t)
while optimizes a value function and satisfies the bound

condition.

Generally, the controller is combined by the steady-state

control ud and the feedback control ue. The steady-state part

ud satisfies

ẋ = f(l) + g(l)ud = s(l), (4)

and yields

ud = g−1(l)(s(l)− f(l)). (5)

The other part ue is aimed at minimizing a value function

Ve(e) =

∫ ∞

t

[uT
e Rue + eTQee]dτ, (6)

where e = x − d represents the tracking error, Qe(x) is a

positive definite matrix. Using the HJB equation [1], it has

that

ue = −1

2
R−1g(x)T

∂Ve(e)

∂e
. (7)

Combine the above two parts, the optimal tracking controller

is derived. However, since the control input is constrained, the

control policy can not be designed as two independent parts

and should be considered as a whole.

III. MAIN RESULTS

A. Augmented system

Inspired by [3], we augment the original system dynamics

as

Λ̇ = F (Λ) +G(Λ)u, (8)

where Λ = [eTlT]T ⊂ R
2n, and

F (Λ) =

[
f(e+ l)− s(l)

s(l)

]
(9)

G(Λ) =

[
g(e+ l)

0

]
. (10)

Then, to handle the feature of the constrained peculiarity, a

nonquadratic function is adopted to design the value function.

V (Λ(t))

=

∫ ∞

t

e−λ(τ−t)

[
ΛTQΛ + 2

∫ u(τ)

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ.

(11)

where Q = [Qe, 0; 0, 0], φ(·) = tanh(·), and R =
diag(r1, r2, . . . , rm) ≥ 0.

It should be noted that the discount factor λ in the above

value function (21) is necessary [3], [4]. If λ = 0, the value

function (11) will be unbounded while d(t) keeps oscillate,

because ud is depends on d(t).

Differentiate V (Λ(t)) along (8), the tracking Bellman equa-

tion is derived as

V̇ (Λ) =− ΛTQΛ− 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

+ λ

∫ ∞

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u(τ)

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

=λV (Λ)− ΛTQΛ− 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

(12)

Then, the HJB equation is

H(Λ, u∗,∇V ∗(Λ))

=− λV ∗(Λ) +∇V ∗(Λ)T(F (Λ) +G(Λ)u∗)

+ ΛTQΛ + 2

∫ u∗

0

[
ūφ−1

(μ
ū

)]T
Rdμ = 0

(13)

where ∇V ∗(Λ) = ∂V ∗(Λ)/∂Λ. The optimal value function

V ∗(Λ) is

V ∗(Λ(t)) = min
u

∫ ∞

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u(τ)

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

(14)

Using the stationarity condition, the optimal solution u∗(Λ) is

u∗(Λ) = −ūφ(
1

2ū
R−1G(Λ)T∇V ∗(Λ)). (15)

In [3], the optimal tracking controller is solved by PI

method, which suffered from an initial restriction. Next, we

will introduce the value iteration mechanism to design the

algorithm.

B. VI algorithm

For convenience, define Λu(t+ T ) as below

Λu(t+ T ) = Λ(t) +

∫ t+T

t

F (Λ(τ)) +G(Λ(τ))u(Λ(τ))dτ.

(16)

Then, the VI algorithm can be proposed as:

Policy improvement

ui(Λ) = −ūφ(
1

2ū
R−1G(Λ)T∇Vi(Λ)). (17)

Value function update

Vi+1(Λ(t)) =e−λTVi(Λ
ui(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ ui(Λ(τ))

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ.

(18)

Before we show the iterative property of the proposed

algorithm, some assumptions are assumed.
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Assumption 1. The initial condition of the proposed algorithm
satisfies

κV ∗(Λ) ≤ V0(Λ) ≤ κV ∗(Λ), (19)

where V0(Λ) represents the initial value function, 0 ≤ κ ≤
κ < ∞.

The above assumption is the initial condition of the pro-

posed algorithm. Since V0(Λ) is semi-definite positive and

V ∗(Λ) is definite positive, the above assumption is reasonable.

Assumption 2. There exist constant 0 < β < ∞ satisfies

V ∗(Λμ(t+ T )))

≤β

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u(τ)

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

(20)

Next, based on the above definitions and assumptions, the

theorems are proposed.

Theorem 1. The iterations between the proposed algorithm
(17) and (18) satisfies

κiV
∗(Λ) ≤ Vi(Λ) ≤ κiV

∗(Λ), (21)

κi+1 = 1 +
κi − 1

1 + β−1
, κi+1 = 1 +

κi − 1

1 + β−1
(22)

where κ0 = κ and κ0 = κ.

Proof. The discussion will be divided into two parts.

1.Lower bound of (21)

Using Assumption 1, while i = 1, it yields

V1(Λ(t))

= min
u

[
e−λTV0(Λ

u(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

≥ min
u

[
κ− 1

1 + β
e−λTV ∗(Λu(t+ T ))

− κ− 1

1 + β
e−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

+ κe−λTV ∗(Λu(t+ T ))

]
.

(23)

Note that the following fact always holds for constants y ≥
0, z > 0

y − y − 1

1 + z
= 1 +

y − 1

1 + z−1
. (24)

According to the Assumption 2, it obtains that

V1(Λ(t))

≥ min
u

[
(κ− κ− 1

1 + β
)e−λTV ∗(xu(t+ T ))

+ (1 +
κ− 1

1 + β−1
)

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

=

(
1 +

κ− 1

1 + β−1

)
min
u

[
e−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ +

]
= κ1V

∗(Λ(t)).

(25)

If the lower bound of (21) holds for i = j − 1, it has

Vj(Λ(t))

= min
u

[
e−λTVj−1(Λ

u(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

≥ min
u

[
κj−1e

−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

≥ min
u

[
(κj−1 −

κj−1 − 1

1 + β
)e−λTV ∗(Λu(t+ T ))

+ (1 +
κj−1 − 1

1 + β−1
)

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

=

(
1 +

κj−1 − 1

1 + β−1

)
min
u

[
e−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]
= κjV

∗(Λ(t)).

(26)

The proof of the first part is completed.
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2.Upper bound of (21)

Using Assumption 1, while i = 1, it yields

V1(Λ(t))

= min
u

[
e−λTV0(Λ

u(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

≤ min
u

[
κe−λTV ∗(Λu(t+ T ))

+
κ− 1

1 + β
e−λTV ∗(Λu(t+ T ))

− κ− 1

1 + β
e−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]
.

(27)

According to the Assumption 2, it yields

V1(Λ(t))

≤ min
u

[
(κ− κ− 1

1 + β
)e−λTV ∗(xu(t+ T ))

+ (1 +
κ− 1

1 + β−1
)

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

=

(
1 +

κ− 1

1 + β−1

)
min
u

[
e−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]
= κ1V

∗(Λ(t)).

(28)

If the upper bound of (21) holds for i = j − 1, it has

Vj(Λ(t))

= min
u

[
e−λTVj−1(Λ

u(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

≤ min
u

[
κj−1e

−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

≤ min
u

[
(κj−1 − κj−1 − 1

1 + β
)e−λTV ∗(Λu(t+ T ))

+ (1 +
κj−1 − 1

1 + β−1
)

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]

=

(
1 +

κj−1 − 1

1 + β−1

)
min
u

[
e−λTV ∗(Λu(t+ T ))

+

∫ t+T

t

e−λ(τ−t)

[
ΛTQΛ

+ 2

∫ u

0

[
ūφ−1

(μ
ū

)]T
Rdμ

]
dτ

]
= κjV

∗(Λ(t)).

(29)

The proof of the second part is completed.

Theorem 2. Iterated between the proposed algorithm (17) and
(18), both sides of (21) converge to V ∗(Λ) as i → ∞, i.e.,

lim
i→∞

κiV
∗(Λ) = lim

i→∞
κiV

∗(Λ) = V ∗(Λ). (30)

Proof. From Theorem 1, the lower bound of (21) satisfies

Vi(Λ) ≥ κiV
∗(Λ), κi+1 = 1 +

κi − 1

1 + β−1
, (31)

and it has

lim
i→∞

κiV
∗(Λ) = lim

i→∞

(
1 +

κ− 1

(1 + β−1)i

)
V ∗(Λ) = V ∗(Λ).

(32)
The upper bound of (21) satisfies

Vi(Λ) ≤ κiV
∗(Λ), κi+1 = 1 +

κi − 1

1 + β−1
, (33)

and it has

lim
i→∞

κiV
∗(Λ) = lim

i→∞

(
1 +

κ− 1

(1 + β−1)i

)
V ∗(Λ) = V ∗(Λ).

(34)
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Fig. 1. State trajectories with the first iterative control.

The limitation of both sides of (21) can be obtained. The proof

is completed.

Since both sides of (21) converge to V ∗(Λ), the optimality

can be obtained by squeeze theorem.

IV. SIMULATION

In this part, a nonlinear system [3] is simulated to verify

the algorithm, and the system dynamics are as

ẋ =

[
x2

−x3
1 − 0.5x2

]
+

[
0
1

]
u, (35)

the control input is bounded as |u| ≤ ū = 3.

The desired trajectories are as below,

l̇ = Sl =

[
0 1
−5 0

]
l, (36)

and the initial point is l(0) = [0,
√
5/2]. Reconstruct the

system dynamics in (8) form, it has

Λ̇ =

⎡⎢⎢⎣
Λ2

−(Λ1 + Λ3)
3 − 0.5(Λ2 + Λ4) + 5Λ3

Λ4

−5Λ3

⎤⎥⎥⎦+

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦u
= F (Λ) +G(Λ)u.

(37)

The integral time sets as T = 0.05s. The value function (11)

is set as λ = 0.01, R = 1, Qe = 1000I . A neural network

with structure 4-100-1 is adopted to approximate the iterative

value function, and choose tanh(·) as the activation function.

The state trajectories and the desired trajectories under

u1(Λ) are presented in Fig.1. The comparison displays that

the trajectory of state x1 diverges from the desired trajectory

d1, which implies u1(Λ) is not an admissible control policy.

After implementing the proposed VI algorithm for 100

iterations, a converged control policy is obtained. The state

trajectories and the input trajectory under u100(Λ) are present-

ed in Fig.2-Fig.3. The state trajectories can track the desired

0 5 10 15

Time Step

-0.5

0

0.5

1

state x
1

desired trajectories d
1

0 5 10 15

Time Step

-1

-0.5

0

0.5

1
state x

2

desired trajectories d
2

Fig. 2. State trajectories with the obtained control.

0 5 10 15

Time Step

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Input trajectories with the obtained control.

trajectories at around time 4s in Fig.2. In Fig.3, it displayes

that the input trajectory satisfies the bound condition. After

the state trajectories reach the desired trajectories, only the

steady-state part ud is required, and thus the input trajectory

oscillates with an equal amplitude.

V. CONCLUSION

The VI mechanism has been introduced to design the

continuous-time nonlinear constrained optimal tracking con-

troller. The original system dynamics has been augmented, and

a nonquadratic performance function with discount factor has

been defined. The proposed VI algorithm could be initialized

by any arbitrary semi-definite positive function, which over-

came the initial restriction in PI-based methods. The iterative

property and the optimality of the proposed VI algorithm has

been proved.
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